Novel Metastable Structures of WO_3 , MoO_3 and $W_{1-x}Mo_xO_3$ Obtained by the Deintercalation of Layered Amine Adducts

S. Ayyappan, G. N. Subbanna and C. N. R. Rao*

Abstract: Deintercalation of amines from the layered amine adducts of WO₃, MoO₃ and W_{1-x}Mo_xO₃ has been employed as a soft chemical route to produce unusual metastable structures of the oxides. After the adducts of WO₃, MoO₃ and W_{1-x}Mo_xO₃ (x = 0.25, 0.5, 0.75) with amines such as triethylamine (TEA), pyridine, *n*-butylamine and *n*-octylamine had been characterized, deintercalation was carried out thermally as well as by acid leaching. Thermal deintercalation yielded novel metastable structures of WO_3 and MoO_3 that were significantly different

Keywords

acid leaching · deintercalation · layered oxides · metastable oxides · molybdenum compounds · tungsten compounds from the stable forms, which contain distorted metal-oxygen octahedra. Thus, ReO₃-type cubic WO₃ was obtained by the thermal deintercalation of WO₃ \cdot 0.5 TEA. Acid leaching of the amines gave metastable phases of WO₃, MoO₃ and W_{1-x}MO_xO₃, which were different from those obtained thermally. All the metastable phases transformed to the corresponding stable forms at higher temperatures.

Introduction

Many of the developments in the chemistry of transition metal oxides have originated from the investigations of the oxides of tungsten and molybdenum. Besides forming novel phases such as shear and tunnel structures, both WO₃ and MoO₃ form a variety of bronzes in which the intercalated proton, alkali metal ion and similar species reduce the W and Mo ions, often giving rise to itinerant d electrons. The structures of WO₃ and MoO₃, however, differ significantly: WO3 has a three-dimensional monoclinic structure and MoO₃ a layered orthorhombic structure,^[1-3] although the metal ion occupies a distorted octahedral site in both the cases because of the d^o configuration. Neither of these oxides is therefore known to exist in the perfectly cubic structure of the ReO₃ type at room temperature. However, both MoO₃ and WO₃ form mono and dihydrates of similar structure without reduction of the metal ions.[2-6] Interestingly, both these oxides form layered (coordinative intercalation) compounds with pyridine derivatives.[6, 7]

We have explored the possibility of preparing cubic (ReO₃ type) and other novel metastable phases of MoO₃ and WO₃ by the deintercalation of the amine adducts. The deintercalation of the alkali metal ions A from intercalation compounds of the type A_xMX_y offers a low-temperature route for the synthesis of novel MX_y phases that are otherwise difficult to prepare.^[8,9] Thus, hexagonal VS₂ can only be prepared by the deintercala-

 [*] Prof. Dr. C. N. R. Rao Solid State and Structural Chemistry Unit and CSIR Centre of Excellence in Chemistry Indian Institute of Science, Bangalore (India) Telefax: Int. code + (80) 334-1683 or 334-6438
S. Ayyappan, Dr. G. N. Subbanna

Materials Research Centre, Indian Institute of Science

tion of lithium from LiVS₂.^[10] There are indications that new forms of WO₃ and MoO₃ result from the dehydration of oxide hydrates.^[2, 3, 11, 12] For the purpose of the present study, we have prepared, for the first time, layered adducts of WO₃ and MoO₃ with triethylamine (TEA). After characterization of the adducts by X-ray diffraction, infrared spectra, thermogravimetric analysis and chemical analysis, the amines are deintercalated by thermal treatment in dry air or in dynamic vacuum and by acid leaching. The layered adducts of WO₃ and MoO₃ with pyridine are studied in a similar manner. We then examine the deintercalation of the amines from the adducts of WO₃ with n-butylamine and n-octylamine and also from the TEA adducts of $W_{1-x}Mo_xO_3$ (x = 0.25, 0.5, 0.75) solid solutions. The present study reveals not only the unexpected formation of cubic WO₃ of the ReO₃ type, but also of other novel metastable phases of WO₃, MoO₃ and $W_{1-x}Mo_xO_3$, depending on the mode of deintercalation. These unusual phases might well have interesting physical and chemical properties for applications in material sciences.

Results and Discussion

WO₃, WO₃·H₂O, WO₃·2H₂O, MOO₃·2H₂O and W_{1-x}Mo_xO₃·H₂O all interacted with neat triethylamine (TEA) to form the novel layered adducts of composition WO₃·0.5 TEA, MOO₃·0.5 TEA and W_{1-x}Mo_xO₃·y TEA. WO₃ also formed such compounds with primary amines such as *n*-C₄H₉NH₂ and *n*-C₈H₁₇NH₂. The molecular volume of TEA is higher than those of pyridine and the primary amines studied here. The structures of the layered adducts were obtained by X-ray diffraction, generally by comparing the calculated and observed patterns. The unit cell dimensions of the various amine adducts of WO₃, MOO₃ and W_{1-x}Mo_xO₃ are listed in Table 1.

Table 1. Appearance and unit cell dimensions of the amine intercalates of WO₃, MoO₃ and $W_{1-x}Mo_xO_3$.

Compound	Colour	Structure	a/Å	b/Å	c/Å
WO, 0.5TEA	colourless	orthorhombic	9.731(12)	6.885(6)	11.273(8)
$WO_3 \cdot 0.85C_4H_9NH_2$	pale yellow-brown	orthorhombic	11.099(8)	9.890(9)	15.290(20)
$WO_3 \cdot n - C_8 H_{17} NH_2$	colourless	orthorhombic	7.817(5)	11.300(4)	23.244(10)
WO ₃ · pyr	pale green	tetragonal	5.296(4)	-	11.488(10)
MoO₃ · pyr	pale green	tetragonal	5.271(2)	~	11.477(4)
MoO ₃ · 0.5TEA	pale grey	orthorhombic	9.850(3)	9.411(6)	20.325(9)
W _{0.75} Mo _{0.25} O ₃ · 0.55TEA	pale grey	orthorhombic	11.513(7)	14.503(7)	17.635(9)
W _{0.5} Mo _{0.5} O ₃ · 0.4TEA	pale grey	orthorhombic	11.234(6)	14.506(7)	17.476(6)
W _{0.25} Mo _{0.75} O ₃ 0.5TEA	pale grey	orthorhombic	10.431(4)	14.287(13)	18.767(8)

The formation of a layered adduct of MoO₃ with TEA is not surprising, since MoO₃ and MoO₃ 2H₂O both have layered structures themselves. Yet, the layered structures of the starting materials are different to those of the products; this suggests that a structural reorganization takes place when the amine adduct is formed, at least in the case of MoO₃. The situation with WO₃ is somewhat different, since WO₃ does not have the layered structure of its hydrates. It is possible that the high Lewis basicity $(pK_a \approx 10)$ of TEA favours adduct formation. With the hydrates of WO₃, TEA adduct formation is straightforward, whereas considerable structural reorganization of the oxide is clearly necessary for the formation of the amine adduct with WO₃. The adducts of WO₃ with TEA, n-butylamine and n-octylamine possess an orthorhombic structure similar to those of MoO₃ intercalates. It should be noted that the WO₃ hydrates also crystallize in the orthorhombic structure. The amine adducts only decompose to give off the amines at around 650 K. The infrared spectra confirm the presence of metal-amine coordination in the adducts studied: W(Mo)=O and W(Mo)-Nstretching bands are observed in the 920-940 and 400- 475 cm^{-1} regions. In the following analysis of their behaviour on heating and treatment with acid, the amine adducts are assumed to be intercalated coordination compounds.

Thermal deintercalation of TEA adducts of WO_3 and MoO_3 : When $WO_3 \cdot 0.5$ TEA was slowly heated, deintercalation of the amine was observed at around 670 K, as measured by thermogravimetry. Figure 1 shows the X-ray powder diffraction pat-

Editorial Board Member:^[*] Professor C. N. R. Rao is the Albert-Einstein Research Professor of Chemical Sciences at the Indian Institute of Science and President of the Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India. He is a Fellow of the Royal Society, London, Foreign Associate of the U. S. National Academy of Sciences and an honorary member of many other academies. His main research interests are in solid-state chemistry, spec-

troscopy and molecular structure, and surface science. He is the recipient of many awards and D. Sc.'s (honoris causa) from several universities. He is the author of over 500 papers and 10 books in solid-state chemistry. He was President of the International Union of Pure and Applied Chemistry and is Honorary Fellow of the Royal Society of Chemistry.

Fig. 1. Powder X-ray diffraction patterns of a) the stable monoclinic phase of WO₃, b) WO₃ \cdot 0.5 TEA, c) metastable ReO₃-type cubic phase of WO₃ obtained by heating WO₃ \cdot 0.5 TEA to 670 K and d) monoclinic WO₃ obtained by heating cubic WO₃ to 720 K.

terns of the starting material (monoclinic form of WO₃), the orthorhombic WO₃.0.5TEA and the oxide obtained after deintercalation at 670 K. The latter shows no amine bands in the IR spectrum. Its diffraction pattern is very simple and can only be indexed as an undistorted cubic structure similar to that of ReO_3 . The cubic cell parameter is (3.812 Å) comparable to that of ReO₃ (3.75 Å). Seguin et al.^[11] obtained a cubic phase with a = 3.71 Å from the hydrate. Figure 2a shows the bright-field image of the crystallites of the cubic phase along with the electron diffraction pattern. The latter gives a unit cell parameter of 3.80 Å. The lattice image of the cubic phase shows the expected 3.8 Å fringes (Fig. 2b). The crystallites of the cubic phase are small and the morphology is quite different from that of the stable monoclinic phase of WO₃; this suggests that the formation of the cubic phase following deintercalation probably involves lattice reconstruction. The formation of the ReO₃-type

^[*] Members of the Editorial Board will be introduced to the readers with their first manuscript.

Fig. 2. a) Bright-field image of cubic WO_3 crystals; inset: electron diffraction pattern. b) Lattice image of cubic WO_3 .

cubic phase of WO₃ by the thermal deintercalation of WO₃. 0.5 TEA has never before been reported. This is also the first definitive report of a perfect cubic structure of a d⁰ oxide being formed without any chemical modification. In Figure 3 we compare the cubic and monoclinic structures of WO₃ along the *c* axis. That the cubic phase is metastable is confirmed by the fact that it transforms to the stable monoclinic phase at 720 K (see Fig. 1 d). Accordingly, differential thermal analysis shows an exothermic transition at 720 K.

Fig. 3. Structures of monoclinic WO₃ (left) and cubic WO₃ (right).

In Figure 4, the X-ray diffraction patterns of the monoclinic $MoO_3 \cdot 2H_2O$ and of the orthorhombic $MoO_3 \cdot 0.5TEA$ are shown. When $MoO_3 \cdot 0.5TEA$ was heated to 620 K, deintercalation occurred, as measured by thermogravimetry. The X-ray diffraction pattern of the deintercalation product seems to correspond to a tetragonal structure (Fig. 4c). The unit cell parameters of this phase are a = 3.430 and c = 7.635 Å. The deintercalated product was partly amorphous, but sufficient crystallites were present to enable us to record an electron diffraction pattern corresponding to the above unit cell. This phase of MoO_3 is metastable and transformed to the stable orthorhombic phase on heating above 670 K. This can be seen from the X-ray diffraction pattern in Figure 4d.

Fig. 4. Powder X-ray diffraction patterns of a) monoclinic $MoO_3 \cdot 2H_2O$, b) $MoO_3 \cdot 0.5TEA$, c) metastable ReO_3 -type cubic MoO_3 obtained by heating the amine intercalate to 620 K and d) the stable orthorhombic MoO_3 (layered structure) obtained by heating cubic MoO_3 to 670 K.

The deintercalation of the WO₃ · pyr was achieved by thermal treatment. On heating tetragonal WO₃ · pyr gradually, deintercalation occurred at around 670 K. The product was obtained in a fine particulate form. The structure appears to be tetragonal (just as the intercalation compound), except that the cell parameters differ considerably (a = 7.501, c = 3.324 Å). These parameters could be confirmed by electron diffraction. This phase transformed to the stable monoclinic form of WO₃ at 720 K. We are not, however, entirely certain of the tetragonal structure of the metastable phase because of the large widths of the X-ray diffraction profiles.

Acid leaching of amine adducts of WO₃ and MoO₃: We examined the deintercalation of WO3 · 0.5 TEA and WO3 · pyr by acid leaching, that is, the amine was washed out as an ammonium salt. Thermogravimetry showed that weight loss (<2%) in the products obtained by acid leaching was negligible. Infrared spectra showed the absence of bands due to the amines. The product obtained by leaching WO3 · 0.5 TEA was examined by X-ray powder diffraction (Fig. 5). The pattern could be fitted to an orthorhombic cell with unit cell parameters of a = 7.793, b = 7.931 and c = 5.388 Å. Electron diffraction patterns of this sample confirmed the unit cell parameters. Interestingly, leaching of WO₃ pyr also gave orthorhombic WO₃ with the same unit cell parameters, as can be seen from the X-ray diffraction pattern (Fig. 6a). Intercalates of *n*-butylamine and *n*-octylamine with WO₃ similarly gave orthorhombic WO₃ of identical unit cell dimensions when leached with acid (Fig. 6b,c). The acid leaching method for deintercalating amines appears to be a

delicate process compared to deintercalation by heating. This is shown by the fact that the orthorhombic WO_3 obtained by leaching WO_3 -amine intercalates retains the layered structure. There appears to be no real lattice reconstruction here. The

Fig. 5. Powder X-ray diffraction patterns of a) $WO_3 \cdot 0.5$ TEA, b) orthorhombic WO_3 obtained by leaching $WO_3 \cdot 0.5$ TEA with acid and c) stable monoclinic WO_3 obtained by heating the orthorhombic WO_3 to 620 K.

Fig. 6. Powder X-ray diffraction patterns of orthorhombic WO₃ obtained by acid leaching of a) WO₃ \cdot pyr, b) WO₃ $\cdot 0.85n$ -C₄H₉NH₂ and c) WO₃ $\cdot n$ -C₈H₁₇NH₂.

orthorhombic form of WO_3 is however metastable and transforms to the stable monoclinic form at 620 K.

Acid leaching of $MoO_3 \cdot pyr$ and $MoO_3 \cdot 0.5$ TEA gave products with similar X-ray diffraction patterns (Fig. 7). The patterns can be indexed to a monoclinic unit cell with a = 6.824, b = 10.126 and c = 8.146 Å and $\beta = 91.85^\circ$. The monoclinic form of MoO_3 is metastable and transforms to the stable orthorhombic MoO_3 at 620 K. The monoclinic form of MoO_3

Fig. 7. Powder X-ray diffraction patterns of a) $MoO_3 \cdot 0.5$ TEA, b) monoclinic MoO_3 obtained by leaching of $MoO_3 \cdot 0.5$ TEA (or $MoO_3 \cdot pyr$) with acid and c) stable orthorhombic MoO_3 . For clarity, only a selection of the *hkl* indices are shown.

obtained by leaching amine intercalates was different from β' -MoO₃, a metastable analogue of WO₃, reported by McCarron^[2] (a = 7.12, b = 5.37 and c = 5.57 Å and $\beta = 91.9^{\circ}$) and β -MoO₃ (a = 7.42, b = 7.48 and c = 7.69 Å and $\beta = 90.1^{\circ}$) reported by Parise et al.^[13]

Acid leaching of TEA adducts of W1-xMoxO3: Intercalation of $W_{1-x}Mo_xO_3$ (x = 0.25, 0.5, 0.75) with TEA gave products in which 0.5, 0.4 and 0.5 moles of the amine had been incorporated. The X-ray powder diffraction patterns can be indexed to orthorhombic cells. The unit cell parameters are given in Table 1. The unit cell volume of the intercalate decreases with increasing molybdenum content in the solid solution. Leaching these intercalates with acid resulted in formation of oxide products of orthorhombic structure, as can be seen from the X-ray powder diffraction patterns shown in Figure 8. The deintercalation process was confirmed by thermogravimetry (weight loss from the oxide product was < 2%), and the absence of the amine bands in the infrared spectra. This result is interesting in that acid leaching gives oxide products of the same structure and unit cell dimensions regardless of the molybdenum content in $W_{1-r}Mo_rO_3$, although the unit cell dimensions of the parent oxides are different.

Fig. 8. Powder X-ray diffraction patterns of orthorhombic $W_{0.75}Mo_{0.25}O_3$, $W_{0.5}Mo_{0.5}O_3$ and $W_{0.25}Mo_{0.75}O_3$ obtained by leaching of the TEA intercalates with acid.

Conclusion

The present study demonstrates how the soft chemistry route, involving intercalation of amines in oxides such as WO_3 and MoO_3 followed by deintercalation, can produce novel forms of oxides. The coordination of the amine to the metal atom of the oxide host causes changes in the structure on deintercalation, which depend on the method adopted. In Table 2 we have listed

Table 2. Novel metastable phases of WO₃, MoO₃ and $W_{1-x}Mo_xO_3$.

unit cell parameters of the various forms of WO₃, MoO₃ and $W_{1-x}Mo_xO_3$ (x = 0.25, 0.5, 0.75) phases obtained by the deintercalation thermally or by leaching with acid. It might be thought that the products of deintercalation are the hydrogen bronzes H_xWO₃ and H_xMoO₃. It must, however, be noted that H_xWO₃ is generally blue or dark blue.^[14] H_xMoO₃ is blue, green or red.^[15] The data in Table 2 shows that the metastable phases of WO₃, MoO₃ and $W_{1-x}Mo_xO_3$ do not have the same colour or structure as the hydrogen bronzes. The oxides obtained by thermal decomposition of the intercalates were found to be different to those obtained by leaching with acid. The oxide product obtained by latter method, especially in the case of WO3 · pyr, possesses a structure closer to that of the parent intercalation compound; this suggests that deintercalation by treatment with acid is milder than the thermal route, which involves lattice reconstruction.

Experimental Procedure

Powder X-ray diffraction patterns were recorded with a STOE X-ray diffractometer employing Cux, radiation and a position-sensitive detector (PSD). Indexing of the patterns and refinements were carried out with the help of the SADI/P package [16]. Samples of the intercalated and deintercalated WO₃, MoO₃ and W_{1-x}Mo_xO₃ for X-ray diffraction were prepared in a glove box. Electron diffraction patterns, highresolution images and bright field images recorded on several crystals of each sample were obtained with a JEOL-200CX electron microscope operating at 200 kV. Samples for electron microscopy studies were prepared by grinding the powders finely in acetone medium, depositing them on carbon-coated grids. Electron spin resonance measurements were carried out at room temperature with a Varian E-109 X-band spectrometer with DPPH as the reference. Room temperature infrared spectra of samples in dry KBr pellets were recorded on a Bruker-IFS 113 V FT-IR spectrometer. Thermogravimetric analyses were carried out on a Cahn TG-131 system in a dry oxygen atmosphere with a heating rate of 10° min⁻¹ from room temperature to 873 K. Elemental analysis for C, H and N was carried out with a Haraeus CHNO rapid analyser.

WO₃ was vacuum-dried before use. MoO₃ was purified by vapour-phase transport at 1070 K in oxygen. WO₃ · 2H₂O, WO₃ · H₂O and MoO₃ · 2H₂O were prepared by literature procedures [4,5]. The unit cell dimensions of WO₃ · H₂O and WO₃ · 2H₂O were a = 5.249, b = 10.711, c = 5.133 Å and a = 7.450, b = 6.926, c = 3.723 Å, respectively. The unit cell dimensions of MOO₃ · 2H₂O were a = 10.476, b = 13.822, c = 10.606 Å and $\beta = 91.622^{\circ}$. W_{1-x}Mo₂O₃ (x = 0.25, 0.5, 0.75) compositions were prepared by decomposition of the hydrates of corresponding compositions as described in the literature [3]. The unit cell dimensions of these solid solutions obtained from the X-ray powder data were as follows: x = 0.25: a = 7.282, b = 7.508,

Oxide	Description (colour)	a/Å	<i>b</i> /Å	c/Å	Method of preparation
WO,	stable, monoclinic (greenish yellow)	7.306(1)	7.540(1)	7.692(1) $\beta = 90.881(5)^{\circ}$	
WO3	metastable, cubic (pale green)	3.812(7)			WO ₃ .0.5 TEA heated at 670 K
WO3	metastable,tetragonal (?) (pale green)	7.501(3)		3.324(4)	WO ₃ · pyr heated at 670 K
WO3	metastable, orthorhombic (greenish yellow)	7.793(3)	7.931(4)	5.388(6)	$WO_3 \cdot 0.5 TEA, WO_3 \cdot 0.85 C_4 H_9 NH_2,$ $WO_3 \cdot pyr or WO_3 \cdot n - C_8 H_{17} NH_2$ leached with acid
MoO3	stable, orthorhombic (pale green)	3.962(3)	13.858(4)	3.697(1)	
MoO3	metastable, tetragonal (?) (pale green)	3.430(3)	-	7.635(3)	MoO ₃ .0.5TEA heated at 620 K in vacuo
MoO3	metastable, monoclinic (greenish yellow)	6.824(2)	10.126(5)	8.146(3) $\beta = 91.850(24)^{\circ}$	$MoO_3 \cdot 0.5 TEA$ or $MoO_3 \cdot pyr$ leached with acid
W _{1 - x} Mo _x O ₃ [a]	metastable, orthorhombic (greenish yellow)	7.793(3)	7.931(4)	5.388(6)	$W_{1-x}Mo_xO_3 \cdot yTEA$ leached with acid

[a] x = 0.25, 0.5, 0.75.

c = 3.811 Å, $\beta = 90.3^{\circ}$, V = 208.357 Å³; x = 0.5: a = 7.36, b = 7.483, c = 3.931 Å, $\beta = 90.6^{\circ}$, V = 215.722 Å³; x = 0.75: a = 7.342, b = 7.475, c = 3.885 Å, $\beta = 91.3^{\circ}$, V = 213.160 Å³. Pyridine was dried by prolonged refluxing over BaO followed by distillation. Reagent grade triethylamine, *n*-butylamine and *n*-octylamine were distilled twice and stored over activated molecular sieves.

 $WO_3 \cdot 0.5$ TEA was prepared by refluxing $WO_3 \cdot H_2O$ or $WO_3 \cdot 2H_2O$ with excess of TEA in the presence of activated molecular sieves for 4 d. The colourless product was isolated by filtration, washed with TEA and dried in vacuo. The thermogravimetric anyalysis (TGA) of this product (see Fig. 9) showed the composition of the

Fig. 9. Typical TGA curves: a) WO_3 \cdot 0.5 TEA, b) WO_3 \cdot 0.85 n-C_4H_9NH_2 and c) MoO_3 \cdot 0.5 TEA.

intercalate to be WO₃ · 0.5 TEA (calcd wt. loss at 620 K, 17.89%; found, 17.7%). Elemental analysis: calcd C 12.5, H 2.70, N 2.11; found C 12.7, H 2.70, N 2.40. The X-ray powder diffraction pattern of WO₃ · 0.5 TEA can be indexed to an orthorhombic unit cell (a = 9.731, b = 6.885, c = 11.273 Å). Comparison of the observed and calculated spacings supports this structure (Table 3). The infrared spectrum of the intercalate shows the expected bands of the amine, though slightly shifted, in addition to new bands due to W=O and W-N stretching bands around 935 and 400 cm⁻¹, respectively. The ESR spectrum shows only a very weak signal due to W⁵⁺, just as WO₃, pyr [6]. WO₃ · 0.5 TEA could also be prepared by refluxing dry WO₃ with excess TEA for 7 d. The intercalation of amine with the hydrates was, however, much faster than with dry WO₃. Prolonged refluxing of the amine with WO₃, WO₃ · H₂O or WO₃ · 2H₂O did not increase the extent of intercalation.

Table 3. Observed and calculated X-ray diffraction patterns of WO3 0.5 TEA.

hkl	$d_{\rm obs}$	d_{calcd}	hki	d_{obs}	desicd
001	11.325	11.273	211	3.743	3.747
100	9.764	9.731	020	3.444	3.442
011	5.882	5.876	013	3.294	3.298
110	5.604	5.620	021	3.294	3.292
102	4.884	4.877	104	2.704	2.707
201	4.469	4.467	214	2.299	2.299
112	3.983	3.980			

MoO₃ • 0.5 TEA was prepared by refluxing MoO₃ · 2H₂O with excess TEA for 5 d. The essentially colourless product was isolated by filtration, washed with TEA and vacuum dried. Thermogravimetric analysis (see Fig. 9) gave a weight loss of 25.65% (Calcd 25.97%) at 650 K. C·H·N analysis: calcd C 15.61, H 3.69, N 3.05; found C 15.56, H 3.86, N 3.60. The X-ray powder diffraction pattern of the intercalate shows the shifted bands of the amine in addition to bands due to Mo=O and Mo-N stretching bands around 940 and 400 cm⁻¹, respectively. Refluxing MoO₃ with TEA also resulted in the formation of the intercalate, but the reaction was considerably slower than for the hydrate. Prolonged refluxing of the amine with MoO₃ · 2H₂O did not lead to any increase in the extent of intercalation. The intercalate did not show an ESR signal due to Mo^V. **WO₃ · pyr and MoO₃ · pyr** were prepared by the procedure of Johnson et al. [6,7]. Both WO₃ · pyr and MoO₃ · pyr were characterized by X-ray powder diffraction, thermogravimetry (observed wt. loss 24.8 and 34.7%, respectively, at around 620 K) and elemental analysis. The unit cell parameters of WO₃ · pyr and MoO₃ · pyr are a = 35.296, c = 11.488 Å and a = 5.271, c = 11.477 Å, respectively, in agreement with Johnson et al [6,7]. The bands in the infrared spectra of these two intercalates are similar to those reported in ref. [6,7]. WO₃ · pyr: calcd C 16.36. H 1.58, N 3.89; found C 16.31, H 31.62, N 4.30. MOO₃ · pyr: calcd C 26.1, H 2.06, N 6.11; found C 26.9, 3H 2.26, N 6.28.

WO₃ intercalates with *n*-C₄H₉NH₂ and *n*-C₈H₁₇NH₂ were prepared by refluxing WO₃ · H₂O or WO₃ · 2H₂O with the amine for 5 d in the presence of molecular sieves. Thermogravimetry and C¹H¹N analysis gave the compositions as WO₃ · 0.85*n*-C₄H₉NH₂ and WO₃ · *n*-C₈H₁₇NH₂. The observed weight losses in the TGA (typical curve in Fig. 9) were 21.3 and 36.0%, respectively, at 745 and 770 K. WO₃ · 0.85*n*-C₄H₉NH₂: calcd C 16.29, H 3.67, N 4.61; found, C 3 4 g 216.33, H 3.74, N 4.76. WO₃ · *n*-C₈H₁₇NH₂: calcd C 26.8, H 5.31, N 3.90; found, C 26.6, H 5.27, N 3.88. X-ray powder diffraction patterns of the two amine intercalates can be indexed to an orthorhombic unit cell. The infrared spectra show the characteristic bands of the amines, though shifted, as well as W=O and W-N stretching bands at around 925 and 475 cm⁻¹, respectively.

Intercalation of TEA in $W_{1-r}Mo_sO_3$ (x = 0.25, 0.5, 0.75) was achieved by refluxing the monohydrates of the oxide with the amine for 5 d. The compositions obtained were $W_{0.75}Mo_{0.25}O_3 \cdot 0.5$ TEA, $W_{0.5}Mo_{0.5}O_3 \cdot 0.4$ TEA and $W_{0.23}Mo_{0.75}O_3 \cdot 0.5$ TEA as determined by thermogravimetry and elemental analysis. The observed weight losses in the TGA were 21.3, 15.1 and 23.4%, respectively, at 840, 820 and 770 K. The C·H·N analyses of the three compounds gave C 14.92, H 3.11, N 2.9; C 2.62, H 2.63, N 2.45; and C 16.63, H 3.47, N 3.23, respectively; these results agree with the calculated values. These compounds were characterized by X-ray powder diffraction, and the patterns could be indexed to an orthorhombic unit cell.

Procedure for deintercalation: Intercalates of WO₃ and MoO₃ with TEA and pyridine were heated very slowly to different temperatures in dry air or preferably in a dynamic vacuum, and X-ray powder diffraction patterns recorded at the different stages of heating. These patterns showed marked changes soon after deintercalation (at the minimum temperature for deintercalation as found by TGA), indicating the formation of new phases of WO₃ and MOO₃. Deintercalation at higher temperatures gave X-ray diffraction patterns of the stable phases of the oxides. Deintercalation of the amine intercalates was also carried out by treatment with acid (6N HNO₃) for periods ranging between 24 h and 7 d at 330 K. The amine is leached out as an ammonium salt, leaving the oxide host in the solid state. It should be noted that WO₃ and MOO₃ themselves do not react with 6N HNO₃. Infrared spectra of the deintercalated products were recorded to ensure the absence of the amine, and ESR spectra to ensure that there was no reduction of W(Mo)^{V1} to W(Mo)^V. Elemental analysis of the deintercalated products did not show the presence of C, H or N.

Received: November 28, 1994 [F26]

- a) A. M. Chippindale, P. G. Dickens, A. V. Powell, Prog. Solid State Chem. 1991, 21, 133. b) F. Hulliger, Structural Chemistry of Layer-Type Phases (Reidel, Dordrecht, Holland, 1976) p. 176.
- [2] E. M. McCarron III, J. Chem. Soc. Chem. Commun. 1986, 336.
- [3] L. Ganapathi, A. Ramanan, J. Gopalakrishnan, C. N. R. Rao, J. Chem. Soc. Chem. Commun. 1986, 62.
- [4] M. L. Freedman, J. Am. Chem. Soc. 1959, 81, 3834.
- [5] J. R. Gunter, J. Solid State Chem. 1972, 5, 354.
- [6] J. W. Johnson, A. J. Jacobson, S. M. Rich, J. F. Brody, J. Am. Chem. Soc. 1981, 103, 5246.
- [7] J. W. Johnson, A. J. Jacobson, S. M. Rich, J. F. Brody Revue Chim. Minerale, 1982, 19, 420, and the references therein.
- [8] C. N. R. Rao, J. Gopalakrishnan, New Directions in Solid State Chemistry (Cambridge University Press, London/New York, 1986).
- [9] M. S. Whittingham, A. J. Jacobson (Eds), *Intercalation Chemistry* (Academic Press, New York, 1982).
- [10] D. W. Murphy, C. Cros, F. J. DiSalvo, J. V. Waszezak, Inorg. Chem. 1977, 16, 3027.
- [11] L. Seguin, M. Figlarz, Solid State Ionics, 1993, 63-65, 437.
- [12] L. Seguin, B. Gerand, F. Pohtemer, M. Figlarz in Soft Chemistry Routes to New Materials (Eds.: J. Rouxel, M. Tournoux, R. Brec), TransTech Publications, Switzerland, 1994.
- [13] J. B. Parise, E. M. McCarron III, A. W. Sleight, Mater. Res. Bull. 1987, 22, 803.
- [14] C. Genin, A. Driouiche, B. Gerend, M. Figlarz, Solid State Ionics, 1992, 53-56, 315.
- [15] P. G. Dickens, J. J. Birtill, C. J. Wright, J. Solid State Chem. 1979, 28, 185.
- [16] P. Werner, Z. Krist. 1964, 120, 375.